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Abstract

Background—Cluster randomized trials have been utilized to evaluate the effectiveness of 

human immunodeficiency virus (HIV) prevention strategies on reducing incidence. Design of such 

studies must take into account possible correlation of outcomes within randomized units.

Purpose—To discuss power and sample size considerations for cluster randomized trials of 

combination HIV prevention, using an HIV prevention study in Botswana as an illustration.

Methods—We introduce a new agent-based model to simulate the community-level impact of a 

combination prevention strategy and investigate how correlation structure within a community 

affects the coefficient of variation–an essential parameter in designing a cluster randomized trial.

Results—We construct collections of sexual networks and then propagate HIV on them to 

simulate the disease epidemic. Increasing level of sexual mixing between intervention and 

standard of care communities reduces the difference in cumulative incidence in the two sets of 

communities. Fifteen clusters per arm and 500 incidence cohort members per community provides 

95% power to detect the projected difference in cumulative HIV incidence between standard of 

care and intervention communities (3.93% and 2.34%) at the end of the third study year, using a 

coefficient of variation 0.25. Although available formulas for calculating sample size for cluster 

randomized trials can be derived by assuming an exchangeable correlation structure within 

clusters, we show that deviations from this assumption do not generally affect the validity of such 

formulas.

Limitations—We construct sexual networks based on data from Likoma Island, Malawi and base 

disease progression on longitudinal estimates from an incidence cohort in Botswana and in Durban 

as well as a household survey in Mochudi, Botswana. Network data from Botswana and larger 

sample sizes to estimate rates of disease progression would be useful in assessing the robustness of 

our model results.

Conclusions—Epidemic modeling plays a critical role in planning and evaluating interventions 

for prevention. Simulation studies allow us to take into consideration available information on 
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sexual network characteristics, such as mixing within and between communities as well as 

coverage levels for different prevention modalities in the combination prevention package.
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Background

Individual-level HIV prevention approaches, including antiretroviral treatment as prevention, 

male circumcision, pre-exposure prophylaxis (in some populations) and preventing mother-

to-child transmission, have shown efficacy. Efforts are underway to investigate whether 

combining them can achieve community-level control of HIV infection [1].

HIV incidence depends on subject-level factors, like risk behavior, and community-level 

factors, like sexual network characteristics. To reduce the need for treatment, a modified 

treatment as prevention approach that targets only high viral load carriers is part of a 

combination prevention strategy that is under study in a cluster randomized trial in 

Botswana. About 25% of new HIV-1 subtype C infections in southern Africa (where C is 

most prevalent) maintain high viral load levels for at least 1–2 years and have faster cluster 

of differentiation 4 (CD4) cell count decline [2,3]. Identifying and treating this subset can 

both delay onset of acquired immunodeficiency syndrome (AIDS) and reduce HIV 

transmissions [4].

Cluster randomized trials investigate both direct and indirect effects of prevention 

interventions on infectious diseases [5,6]; design and sample size calculation must take into 

account possible correlation of outcomes within randomized units. Sample size formula 

make use of either intraclass correlation (ρ) or coefficient of variation (k) for this purpose 

[7,8,9]. Simulation studies to estimate power have made use of a generalized linear mixed 

model framework as the data generating model [10].

To address the well-known difficulties inherent in estimating k and ρ [8,11,12], Hayes and 

Bennett [7] recommend examining a range of plausible values of k. Spiegelhalter [13] 

proposes a Bayesian method to incorporate the use of prior opinion. Shih [14] suggests an 

internal pilot study when feasible. Campbell et al. [15] review methods for dealing with the 

uncertainty of ρ [16,17] in the planning stage.

In HIV prevention studies, sample size depends on the magnitude of intervention effect as 

well as the HIV incidence in the control group, inaccurate estimates of which threaten 

power. The Mema Kwa Vijana trial of HIV prevention in Tanzania [18] provides an example 

of a negative study with lower than anticipated power. An additional threat arises from the 

attenuating effect of sexual relations formed between individuals who reside in communities 

randomized to different conditions. Hayes et al. [5] discuss a strategy to minimize such 

contamination by using large, geographically defined clusters as randomization units and 

individuals centrally located within each cluster as evaluation cohorts.
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This paper describes sample size considerations for cluster randomized trials of combination 

HIV prevention, motivated by the design of a study in Botswana. We introduce a new agent-

based simulation model to simulate the impact of combination prevention strategy and the 

coefficient of variation, taking into account different levels of the contamination effect. We 

also investigate how correlation structure within a community affects k. The sample size 

formula we use can be derived from random effects models in which cluster-level effects are 

assumed to be independent across clusters, as are individual outcomes within clusters. We 

discuss the impact of deviations from the exchangeable-correlation assumption, which is 

likely to be violated for the outcome of HIV infection; correlation between partners would 

be expected to be higher than that between people who are distant in a sexual network but 

reside within a community.

Methods

Study design overview

The Botswana study investigates whether implementation of a combination of prevention 

interventions reduces HIV incidence. Villages in Botswana will be randomized into one of 

the two arms:

A. “standard of care” with antiretroviral therapy for HIV-infected individuals 

with CD4<350 cells/mm3 or AIDS;

B. antiretroviral therapy for the subjects above and for those with high viral 

load (>10,000 copies/ml), enhanced HIV testing and counseling, 

prevention of mother to child transmission, enhanced linkage of testing to 

care, and male circumcision.

HIV incidence will be estimated from a cohort identified through a random sample of 20% 

of households in each community that includes consenting eligible HIV-negative household 

members who are citizens (or their spouses) between ages 16 to 64 and are able to provide 

informed consent. Incidence cohort subjects are tested annually for HIV. Ease of logistics is 

the reason for sampling of households rather than individuals. The choice of a 20% sample 

represents a trade-off between adequacy of power and restriction of the attenuating effect of 

home-based testing in standard of care communities. To improve efficiency, the Botswana 

Study is qualitatively matched on population size, nature of health facilities, age structure, 

and geographic location; there is no available information matching on predicted incidence, 

which might be ideal.

Sample size determination

Sample size was calculated from a formula developed for matched cluster randomized trials 

[19]:
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where c is the number of clusters per treatment arm, π0 and π1 are the true proportions of 

individuals who reach endpoint in the two arms; m is the number of sampled individuals 

within each cluster, and zα/2 and zβ are the usual upper tail normal probabilities. km is the 

coefficient of variation in true proportions between clusters within matched pairs in the 

absence of intervention, and is defined as the standard deviation of the two proportions of 

clusters within matched pairs divided by their mean.

To predict cumulative incidence over the study period in communities, we used an agent-

based epidemic model - a simulation of the actions and interactions of autonomous agents to 

assess their effects on an entire system - to simulate the HIV spread on collections of 

generated sexual networks. Parameter values in the model (see Table 1) were set based on 

published results as well as information from three sources: (1) the Mochudi study, a pilot 

study to evaluate the uptake of an HIV prevention program for the northeast sector of 

Mochudi, a village in Botswana with a population of around 45,000 [20]; (2) the Botswana/

Durban cohort, a cohort of newly infected individuals combined from two southern African 

cohorts: the HIV pathogenesis Programme Acute Infection Study in Durban, KwaZulu-

Natal, South Africa [21] and the Tshedimoso Study in Gaborone, Botswana [3,22,23]; and 

(3) the Likoma Island sexual network, a cross-sectional sociocentric survey of sexual 

partnerships aiming to investigate the population-level structure of sexual networks 

connecting the young adult population of several villages on Likoma Island, Malawi [24].

Generation of sexual networks

In our models, the evolution of sexual relationships are represented as a dynamic network, in 

which each node represents an individual (male or female), and each edge represents a 

sexual relationship between nodes. The networks are bipartite and only represent relation-

ships between opposite genders, reflecting the fact that in Botswana heterosexual contact is 

believed to be the principle mode of transmission [25] and homosexual contact is hard to 

document. Each network represents all of the sexual relationships that occur in sets of 

matched pairs of communities during the study. A schematic illustration of a static network 

of 2 communities is provided in Figure 1.

In a sexual contact network, the number of edges adjacent to a particular node is called its 

degree, and the degree distribution can be obtained by the collection of nodal degrees [26]. 

We construct degree distributions using a negative binomial distribution [27,28] based on 

parameters (r=5, p=0.7, cutoff=7) estimated from the reported number of sexual partners in 

four years from Likoma Island using a likehood approach.

Using the methods proposed in Goyal et al. [29] that permit incorporation of user-specified 

uncertainty associated with particular network properties, we generate networks that are 

consistent with both a prescribed degree sequence and the target distribution for mixing 

between a pair of communities. A Metropolis-Hastings algorithm provides the basis for 

generating a collection of networks that satisfy the probability distribution assigned to the 

proportion of mixing across communities. The procedure constrains the degree distribution 

by proposing only networks with the prescribed degree distribution and the accept-reject 

probability ensures that the proportion of mixing across communities is consistent with the 

target probability distribution specified by the investigator. The networks are generated 
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assuming that the probability of forming a partnership does not depend on the total number 

of partnerships of the two individuals or other personal characteristics. Relationship 

durations, d, are drawn from a survival distribution estimated from self-reported relationship 

start and end dates from the Mochudi study. A start date is drawn from a uniform 

distribution on the interval from start of study minus d to end of study; this ensures that the 

relationship is present during the study period and avoids time trends in the number of 

relationships. A histogram of the partnership durations and its corresponding Kaplan-Meier 

estimates are given in Figure 2.

Simulation of the disease epidemic

In addition to data from the Mochudi study and the Botswana/Durban cohort, our model 

takes into account community characteristics including population size, varying coverage 

levels for different prevention modalities, as well as individual characteristics including 

transmission risk, disease progression, condom use, linkage to care, and circumcision status.

At time 0, the start of the simulation, we set the initial condition for each community. Each 

eligible individual is assigned an initial HIV infection status based on the current prevalence 

in Botswana, estimated to be 24.8%, and independently of partnership characteristics or 

position in the network. Each infected individual is assigned to a viral load category (<400, 

400–3,499, 3,500–9,999, 10,000–49,999, or 50,000+ copies/ml) as well as an initial CD4 

count based on estimates of their distributions from the household survey in Mochudi. For 

CD4 counts below threshold for treatment, subjects are modeled as receiving antiretroviral 

therapy according to estimates from Mochudi. Background antiretroviral therapy coverage 

for CD4<350 cells/mm3 is set at 60.9% at the start based on a recent survey of the Mochudi 

district in 2011. The percentage of condom use is set as 40% and male circumcision rate at 

the start, at 12.7%, the estimated rate for Botswana [30]. The probability of transmitting to a 

partner is based on the infected individual’s viral load category, awareness of infection 

status, circumcision status, and treatment status, each of which is subject to change over 

time. For example, as disease progresses, a subject’s CD4 count may decrease to levels 

below threshold for treatment guidelines and therefore make the subject eligible for 

treatment. Disease progression is assumed to follow estimates based on the Botswana/

Durban cohort and HIV is only transmitted to partners when their partnership is active. 

Impact of viral load category on transmission risk is based on results reported in Quinn et al. 

[31]; sensitivity analyses are performed using rates reported in Attia et al. [32] and Lingappa 

et al. [33]. Reductions in transmission risks associated with knowing infection status and 

with condom use are set as 30% and 85% and assumed to be independent. Reduction in HIV 

acquisition risks for circumcision is set at 60%. We randomly pick 20% of the population in 

each community to form the incidence cohort. Subjects in the incidence cohort are tested 

annually for HIV infection, and subjects outside of this cohort are tested with probabilities 

set to be the specified coverage levels for testing. The rates for male circumcision, HIV 

testing and counseling and linkage to care (Table 1) are chosen to be the targeted levels for 

the intervention communities and the current and anticipated levels for the standard of care 

communities over the study period. These coverage levels are allowed to vary over time. 

Therefore, the model allows assessment of the impact of a slower-than-expected intervention 

roll-out. In the standard of care communities, subjects become eligible for treatment based 
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on national treatment guidelines; in the intervention communities subjects identified as high 

viral load carriers (>10,000 copies/ml) are also eligible for treatment.

Effect of within-cluster correlation structure on coefficient of variation

Although the sample size formula we used can be derived from models assuming an 

exchangeable correlation structure within clusters, we find that deviations from this 

assumption do not affect the validity of the sample size formula. When this assumption is 

violated, the intraclass correlation ρ does not represent correlation between any two subjects 

in the same cluster, but instead represents the average correlation of observations from the 

same cluster. Even with arbitrary variance-covariance structure within cluster, the increase in 

variance resulting from cluster sampling, commonly measured by the design effect [34], can 

be expressed by a function of ρ and the number of subjects within cluster. The parameter k, 

which provides equivalent information regarding variance inflation as the intraclass 

correlation, captures the heterogeneity in outcomes across clusters resulting from the 

correlations among subjects from the same cluster. To illustrate (see supplementary 

materials), we consider the setting where we have c clusters and sample m subjects within 

each cluster. The variance-covariance matrix for the m individuals within each cluster 

conditional on cluster-level summary is arbitrary. We derive the formulas for ρ, k and the 

design effect and show that to estimate these quantities, it is sufficient to use summary 

measures from each cluster.

When departure from exchangeable correlation structure is expected, it is important that the 

studies used to estimate k employ the same sampling strategy as will the proposed study. 

Consider the case where outcomes of individuals within the same households are more 

correlated than those of individuals from different households within the same community. 

Assume that the sampling strategy is such that within each of the c clusters, we randomly 

sample a households and bij subjects within each household. We assume that  are the 

same across different clusters and suppress i in the subsequent development.

The data generating process for a continuous outcome Yijk can be expressed as:

where i = 1, …, c represents clusters, j = 1, …, a represents households, and k = 1, …, bj 

represents subjects. We assume that . 

Although the subsequent development focuses on a continuous outcome, the results are 

applicable to binary outcomes by considering the corresponding model: Let the probability 

of successes in the ith cluster be μi, and ; let the probability of successes in 

the jth households be γij, and . Within the ith cluster and jth house-hold, 

Yij1, …, Yijbj are independently and identically distributed according to Bernoulli (γij).

Under this model,
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The between-cluster variance is

If we sample one person per household, bj = 1 for j = 1, …, a, the coefficient of variation 

; when we sample all eligible members in each household, bj ≥ 1,

k1 < k2 if any of the bj ’s > 1. The k estimated from sampling one person per household 

would underestimate the k applicable to a study sampling entire households and could 

therefore result in insufficient power.

Results

Effect of sexual mixing between communities

Sexual mixing between intervention and standard of care communities will tend to increase 

incidence in intervention and decrease it in standard of care communities. Figure 3 

illustrates the impact of increasing levels of mixing while holding other conditions fixed, the 

effect of which is to make the cumulative incidences in two sets of communities more 

similar. When the mixing level reaches 50%, implying that subjects are equally likely to 

have partners within and outside of their community, the expected cumulative incidence 

rates become similar.

Projected cumulative HIV incidence in standard of care versus intervention communities

Simulation of the impact of the combination prevention is based on input parameters listed 

in Table 1. Self-reported data from the Mochudi study suggest that approximately 30% of 

partnerships were formed outside of that community. Mixing between communities 

randomized to the same intervention or between standard of care communities and those not 

in the study does not attenuate intervention effects. Furthermore, many Mochudi residents 

work in the nearby capital city Gaborone, the residence of a considerable number of outside 

partners. By contrast most villages in the Botswana study are relatively far from major urban 

centers. Therefore for our setting, we choose a lower level of mixing, 20%, with standard 

error 2.5%. These choices imply that about 95% of sampled values will be between 15% to 

25%. Table 2 below presents the projected cumulative HIV incidences in standard of care 

and intervention communities over 3 years of follow-up.
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Projected coefficient of variation and study power

To obtain a simulated value of k relevant for a matched-pair design, we assign both 

communities to standard of care, calculate a coefficient of variation for each pair, and then 

take the average across many pairs, in our case across 1500 pairs, yielding a value of 0.08. 

All clusters are assumed to have the same population sizes, initial conditions, and rates of 

disease progression for infected subjects. These actually vary over communities, and 

although matched pairs are intended to be quite similar in conditions, 0.08 serves as a lower 

bound. To reflect possible heterogeneity in matched communities, we consider a range of 

values of k from 0.08 to 0.35. Figure 4 displays the number of clusters and cluster sizes 

needed to achieve >90% power to detect the projected difference in 3-year cumulative 

incidences in standard of care and intervention communities. Note that mixing does not 

affect simulated values of k because both communities within a pair are assigned to standard 

of care.

Fifteen clusters per arm and 500 incidence cohort members per community yields 99% 

power to detect the anticipated difference in model-projected cumulative HIV incidence 

between standard of care and intervention communities (3.93% vs. 2.34%; see Table 2) by 

the end of the third study year, for k = 0.08 and 84% power for k = 0.35.

Sensitivity analyses

We perform sensitivity analyses for scenarios associated with varying model input 

parameters that differ between standard of care and intervention communities, such as rates 

of male circumcision, HIV testing and counseling, and/or linkage to care. Table 3 presents 

model input parameters, resulting projected incidence rates and corresponding power for 

selected settings. Settings 1–3 correspond to settings where only one set of these three 

parameters is changed and setting 4 corresponds to the setting where all three are changed to 

the values listed in this table. These settings are chosen to be lower than the values in Table 

1 to reflect the possibility that the targeted coverage levels may not be reached. The 

difference in these values between standard of care and intervention communities is in 

general smaller to assess the associated power loss. As the coverage levels for male 

circumcision, HIV testing and counseling, and/or linkage to care decrease, the incidence 

rates increase as expected. Nevertheless, the planned sample size still achieves >80% power 

for all the settings considered here for a k as large as 0.3.

Additional sensitivity analyses for scenarios associated with lower than projected treatment 

effects and varying rates of losses to follow-up (see Figure 5) show that for the planned 

sample size and k of 0.25 the study has >80% power to detect a reduction of 34% in the 

cumulative incidence even with 20% loss to follow-up.

Discussion

Mathematical modeling plays a critical role in planning and evaluating treatment for 

prevention [35] but requires investigation of underlying assumptions and impact of different 

choices of input parameters and limitations [36]. We construct our sexual network based on 

data from Likoma Island (no such data exist in Botswana), and base disease progression for 
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incident cases and prevalent cases on longitudinal estimates from the fairly limited 

Botswana/Durban incidence cohort (n=77) and the Mochudi study. The similarity of our 

model estimates for the annual and cumulative incidence rates of the standard of care 

communities to the projected estimates from the Joint United Nations Programme on HIV/

AIDS Spectrum model (http://www.unaids.org/en/dataanalysis/datatools/spectrumepp2013/) 

provides reassurance about our results. Extensive analyses of sensitivity to lower-than-

projected treatment effects and varying rates of losses to follow-up (Figure 5) demonstrate 

that, for the planned sample size and a k of 0.25, with a 20% losses to follow-up rate, the 

study has >80% power to detect a reduction of 34% in the cumulative incidence in the 

intervention arm compared to the standard of care arm (3.93%).

The data on relationship duration exhibit “heaping”, i.e., grouping around certain values 

(e.g. integers) because subjects may round their responses. We know of no systematic 

tendency to round up or down responses, but even if it exists, we expect no substantial effect 

of heaping because the transmission probability per day is small. Patterns of sexual behavior 

and networking vary across populations. Because sexual network structure information for 

the communities under study are not available, we allow for considerably greater than 

observed variation in network structures by sampling degree distribution from a negative 

binomial distribution whose parameters were estimated from Likoma Island network data.

Our model did not incorporate different types of sexual relationships, e.g., regular and 

casual, with different frequencies of sex and probability of condom usage; the assumption 

that variation in these factors does not greatly impact on outcomes reflects limited available 

information. The impact of the intervention could be affected by differential rates of 

treatment uptake for people engaged in various types of relationships. The model also does 

not specifically target concurrency metrics, about which little relevant data are available. 

Some mathematical models imply an important role for concurrency, but correlation of 

concurrency and incidence was not observed in rural South Africa [37].

Although our simulation study assigns initial infection status randomly among the 

population, correlation may exist between HIV status and network properties. Further work 

is necessary to properly account for this potential correlation. Data currently available from 

Botswana are ego-centric, obviating the possibility of estimating the correlation. Using only 

partnerships residing within the same household may produce biased estimates as multiple 

partnerships are common in Botswana and many partners are not co-habiting. Ego-centric 

data also limit our ability to estimate parameters associated with mixing by activity level. 

Our model also assumes independence of knowledge of HIV infection status and sexual 

practice due to lack of available information.

Our simulation model randomly samples individuals, but the Botswana study will enroll all 

eligible members of randomly selected households. We expect the difference between the 

two sampling strategies to be small because in Botswana, many sexual partners do not live 

together, implying that correlation in HIV infection rates within household members may 

not be higher than that between households. If this does not hold, the treatment effect 

estimate from our model would not be affected, but the k associated with household samples 
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would likely be greater than that for samples of individuals. The potential power loss can be 

assessed using the formula in the Methods section.

All HIV incident cases are modeled to arise from within the simulated pair of communities. 

In the Botswana study, communities outside of the trial will receive standard of care. As it is 

possible that there will be a greater uptake of services in the control arm compared to the 

communities outside of the trial, sexual contacts with communities outside of the trial may 

modestly increase incidence in the control arm. For the intervention communities, the effect 

of mixing with outside communities should be mostly captured through our model of mixing 

with the control communities, though the effect of this mixing could be slightly greater if 

incidence is higher in the outside than in the control communities. We would expect only 

modest effects of mixing with outside communities above and beyond the mixing across 

study communities randomized to different conditions. Any increase in HIV incidence in 

control communities will result in a larger treatment effect and greater power than projected.

The Botswana study is one of the two large HIV prevention trials commissioned by the 

Presidents Emergency Plan For AIDS Relief that are currently underway. The other is HPTN 

071 [38], which investigates a combination of interventions including universal testing, 

counseling and antiretroviral therapy in Zambia and South Africa. A special feature of the 

Botswana study is its focus on identifying high viral carriers and treating them with 

antiretroviral therapy. Both studies rely on mathematical modeling to investigate the 

plausibility of different intervention effect sizes. These models make use of information 

from a wide variety of sources regarding biology and behavior information that will be 

updated during the course of the studies and at their completion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic illustration of a static network of 2 communities. Solid circles and open circles 

represent individuals in different communities. Within each community, the location of 

circles does not represent their geographical locations.
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Figure 2. 
Histogram of relationship durations and the corresponding Kaplan-Meier estimates in 

Mochudi.
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Figure 3. 
Cumulative incidence of intervention and standard of care (SOC) communities over the 3-

year period with varying levels of mixing, based on input parameters listed in Table 1 and 

results from 1000 pairs of communities.
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Figure 4. 
Number of clusters per arm versus cluster size needed to ensure >90% power to detect 

anticipated differences in 3-year cumulative HIV incidence between standard of care 

(3.93%) and intervention arms (2.34%), for varying coefficient of variation k.
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Figure 5. 
Power to detect varying potential reductions of intervention effect in 3-year cumulative HIV 

incidence with varying rates of losses to follow-up.
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Table 2

Projected cumulative HIV incidence in standard of care versus intervention communities over 3 years of study 

follow-up, based on results from 1500 pairs of communities.

Standard of Care Intervention

Cumulative Incidence Cumulative Incidence % Reduction

End of Year1 1.74% 1.42% 18.4%

End of Year2 2.98% 1.99% 33.2%

End of Year3 3.93% 2.34% 40.5%
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